Trends in Estimation of Post-Mortem Interval Using  Instrumental Analysis

Authors

  • Aswathy Ajayan Ph.D. Scholar, Department of Forensic Medicine & Toxicology, JSS Medical College, JSS AHER, Mysore Author
  • G B Aravind Associate Professor & Coordinator of Forensic Science, Department of Forensic Medicine & Toxicology, JSS Medical College, JSS AHER, Mysore Author
  • H V Chandrakanth Professor and HOD, Department of Forensic Medicine & Toxicology, JSS Medical College, JSS AHER, Mysore Author
  • Tanuj Kanchan Professor & Vice Dean, Department of Forensic Medicine & Toxicology, AIIMS Jodhpur Author

DOI:

https://doi.org/10.48165/jfmt.2025.42.3.15

Keywords:

Medico-Legal Examination, Post-Mortem Interval, Autolysis, Thanatomicrobiome, Spectroscopy.

Abstract

The importance of estimating time since death has been acknowledged for centuries. One of the key elements in crime investigation lies in the reckoning of post-mortem interval(PMI). It’s evident why an accurate post-mortem interval estimation is needed in all criminal cases. There is ample literature regarding the techniques for estimating postmortem interval, but these techniques must be as precise, reliable, and scientific as possible. Conventional methods for determining PMI are fixed on physical, metabolic, autolysis, histochemistry, and physicochemical processes. These parameters are employed in the initial period of postmortem, and over time its reliability decreases. Recent research attempts the improvement of post-mortem interval estimation by more predictable and quantifiable parameters. This study presents the current headway in estimating time since death. Chemical changes in biological samples, Spectroscopical analysis for detection of biochemical changes, thanatomicrobiome analysis, predictable protein degradation process in human muscles, and dating of skeletal remains -improved the postmortem interval estimates. Further research is needed in these many parameters, the field still has a long way to go in terms of finding the exclusive formula for accurate post-mortem interval estimation. This is a review that emphasizes several recent methods for precisely estimating  post-mortem intervals by instrumental analysis. 

Downloads

Download data is not yet available.

References

Bolton, S. N., Whitehead, M. P., Dudhia, J., Baldwin, T. C., & Sutton, R. (2015). Investigating the postmortem molecular biology of cartilage and its potential forensic applications. Journal of Forensic Sciences, 60(4), 1061–1067.

Quatrehomme, G., & Iscan, M. (1996). The estimation of the time since death in the early postmortem period. Forensic Science International, 83(2), 155–157.

Shedge, R., Krishan, K., Warrier, V., & Kanchan, T. (2025). Postmortem changes. In: StatPearls. Treasure Island (FL): StatPearls Publishing. PMID: 30969563.

Pittner, S., Bugelli, V., Weitgasser, K., Zissler, A., Sanit, S., Lutz, L., et al. (2020). A field study to evaluate PMI estimation methods for advanced decomposition stages. International Journal of Legal Medicine, 134, 1361–1373.

Kelly, J. A., Van Der Linde, T. C., & Anderson, G. S. (2008). The influence of clothing and wrapping on carcass decomposition and arthropod succession: a winter study in central South Africa. Canadian Society of Forensic Science Journal, 41(3), 135–147.

Sato, T., Zaitsu, K., Tsuboi, K., Nomura, M., Kusano, M., Shima, N., et al. (2015). A preliminary study on postmortem interval estimation of suffocated rats by GC-MS/MS-based plasma metabolic profiling. Analytical and Bioanalytical Chemistry, 407, 3659–3665.

Nokes, L. D., Henssge, C., Knight, B. H., Madea, B., & Krompecher, T. (2002). The estimation of the time since death in the early postmortem period (2nd ed.). London: Hodder Arnold.

Madea, B. (2016). Methods for determining time of death. Forensic Science, Medicine and Pathology, 12, 451–485.

Madea, B. (Ed.). (2023, June 21). Estimation of the time since death. Boca Raton (FL): CRC Press.

Henssge, C., & Madea, B. (2004). Estimation of the time since death in the early post-mortem period. Forensic Science International, 144(2–3), 167–175.

Brooks, J. (2016). Postmortem changes in animal carcasses and estimation of the postmortem interval. Veterinary Pathology, 53(5), 929–940.

Eden, R. E., & Thomas, B. (2022). Algor mortis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.

Wardak, K. S., & Cina, S. J. (2011). Algor mortis: an erroneous measurement following postmortem refrigeration. Journal of Forensic Sciences, 56(5), 1219–1221.

Musile, G., Agard, Y., Wang, L., De Palo, E. F., McCord, B., & Tagliaro, F. (2021). Paper-based microfluidic devices: on-site tools for crime scene investigation. TrAC Trends in Analytical Chemistry, 143, 116406.

Kori, S. (2018). Time since death from rigor mortis: forensic prospective. Journal of Forensic Science & Criminal Investigation, 9(5), 555771.

Hoet, J., & Marks, H. (1926). Observations on the onset of rigor mortis. Proceedings of the Royal Society of London. Series B, Biological Sciences, 100(700), 72–86.

Emam, A., Mujalid, H., Altamimi, N., Faraj, W., Almutairi, M., Alresheedi, Z., et al. (2022). Classification of post-mortem changes and factors affecting it. Journal of Healthcare Sciences, 2, 213–218.

Shrestha, R., Kanchan, T., & Krishan, K. (2023, May 30). Methods of estimation of time since death [Internet]. In: StatPearls. Treasure Island (FL): StatPearls Publishing.

Vanezis, P., & Trujillo, O. (1996). Evaluation of hypostasis using a colour measuring system. Forensic Science International, 78(1), 19–26.

Zapico, S. C., & Adserias-Garriga, J. (2022). Postmortem interval estimation: new approaches by the analysis of human tissues and microbial communities’ changes. Forensic Sciences, 2(1), 163–174.

Harvey, M. L., Gasz, N. E., & Voss, S. C. (2016). Entomology-based methods for estimation of postmortem interval. Research Reports in Forensic Medical Science, 1–9.

Faris, A. M. W. H., Tarone, A. M., & Grant, W. E. (2016). Forensic entomology: evaluating uncertainty associated with postmortem interval (PMI) estimates with ecological models. Journal of Medical Entomology, 53(5), 1117–1130.

Gevers, W. (1975). Biochemical aspects of cell death. Forensic Science, 6(1–2), 25–29.

Javan, G. T., Finley, S. J., Can, I., Wilkinson, J. E., Hanson, J. D., & Tarone, A. M. (2016). Human thanatomicrobiome succession and time since death. Scientific Reports, 6(1), 29598.

Li, Z., Huang, J., Wang, Z., Zhang, J., & Huang, P. (2019). An investigation on annular cartilage samples for post-mortem interval estimation using Fourier transform infrared spectroscopy. Forensic Science, Medicine and Pathology, 15, 521–527.

Grossman, P. D., & Colburn, J. C. (2012). Capillary electrophoresis: theory and practice (2nd ed.). San Diego: Academic Press.

Havel, J., Peña-Méndez, E. M., & Rojas-Hernández, A. (2013). Artificial neural networks in capillary electrophoresis. In: Tóth, K., & Šimurková, M. (Eds.), Capillary electrophoresis and microchip capillary electrophoresis: principles, applications, and limitations (pp. 77–93). New York: Wiley.

Rognum, T., Holmen, S., Musse, M., Dahlberg, P., Stray-Pedersen, A., Saugstad, O., et al. (2016). Estimation of time since death by vitreous humor hypoxanthine, potassium, and ambient temperature. Forensic Science International, 262, 160–165.

Palacio, C., Gottardo, R., Cirielli, V., Musile, G., Agard, Y., Bortolotti, F., et al. (2021). Simultaneous analysis of potassium and ammonium ions in the vitreous humour by capillary electrophoresis and their integrated use to infer the post mortem interval (PMI). Medicine, Science and the Law, 61(1 Suppl), 96–104.

Bocaz-Beneventi, G., Tagliaro, F., Bortolotti, F., Manetto, G., & Havel, J. (2002). Capillary zone electrophoresis and artificial neural networks for estimation of the post-mortem interval (PMI) using electrolytes measurements in human vitreous humour. International Journal of Legal Medicine, 116, 5–11.

Gottardo, R., Palacio, C., Shestakova, K. M., Moskaleva, N. E., Bortolotti, F., & Tagliaro, F. (2019). A new method for the determination of ammonium in the vitreous humour based on capillary electrophoresis and its preliminaryapplication in thanatochemistry. Clinical Chemistry and Laboratory Medicine, 57(4), 504–509.

Bertaso, A., De Palo, E. F., Cirielli, V., & Tagliaro, F. (2020). Lactate determination in human vitreous humour by capillary electrophoresis and time of death investigation. Electrophoresis, 41(12), 1039–1044.

Konieczka, P., & Namieśnik, J. (2010). Estimating uncertainty in analytical procedures based on chromatographic techniques. Journal of Chromatography A, 1217(6), 882–891.

Smith, I. (2013). Chromatography (3rd ed.). Amsterdam: Elsevier (Butterworth-Heinemann).

Coskun, O. (2016). Separation techniques: chromatography. Northern Clinics of Istanbul, 3(2), 156–160.

Bartle, K. D., & Myers, P. (2002). History of gas chromatography. TrAC Trends in Analytical Chemistry, 21(9–10), 547–557.

Littlewood, A. B. (2013). Gas chromatography: Principles, techniques, and applications. Amsterdam: Elsevier.

Dettmer-Wilde, K., & Engewald, W. (2014). Practical gas chromatography: A comprehensive reference. Heidelberg: Springer.

Aiello, D., Luca, F., Siciliano, C., Frati, P., Fineschi, V., Rongo, R., et al. (2021). Analytical strategy for MS-based thanatochemistry to estimate postmortem interval. Journal of Proteome Research, 20(5), 2607–2617.

Moore, H. E., Adam, C. D., & Drijfhout, F. P. (2013). Potential use of hydrocarbons for aging Lucilia sericata blowfly larvae to establish the postmortem interval. Journal of Forensic Sciences, 58(2), 404–410.

Moore, H. E. (2013). Analysis of cuticular hydrocarbons in forensically important blowflies using mass spectrometryand its application in post mortem interval estimations [dissertation]. Keele (UK): Keele University.

Frere, B., Suchaud, F., Bernier, G., Cottin, F., Vincent, B., Dourel, L., et al. (2014). GC-MS analysis of cuticular lipids in recent and older scavenger insect puparia: An approach to estimate the postmortem interval (PMI). Analytical and Bioanalytical Chemistry, 406, 1081–1088.

Kaszynski, R. H., Nishiumi, S., Azuma, T., Yoshida, M., Kondo, T., Takahashi, M., et al. (2016). Postmortem interval estimation: A novel approach utilizing gas chromatography/mass spectrometry-based biochemical profiling. Analytical and Bioanalytical Chemistry, 408, 3103–3112.

Dubois, L. M., Stefanuto, P. H., Perrault, K. A., Delporte, G., Delvenne, P., & Focant, J. F. (2019). Comprehensive approach for monitoring human tissue degradation. Chromatographia, 82(5), 857–871.

Go, A., Shim, G., Park, J., Hwang, J., Nam, M., Jeong, H., et al. (2019). Analysis of hypoxanthine and lactic acid levels in vitreous humor for the estimation of postmortem interval (PMI) using LC–MS/MS. Forensic Science International, 299, 135–141.

Zhang, Y., Liu, L., & Ren, L. (2020). Liquid chromatography–tandem mass spectrometry (LC-MS/MS) determination of cantharidin in biological specimens and application to postmortem interval estimation in cantharidin poisoning. Scientific Reports, 10(1), 10438.

Mok, J. H., Joo, M., Duong, V. A., Cho, S., Park, J. M., Eom, Y. S., Song, T. H., Lim, H. J., & Lee, H. (2021). Proteomic and metabolomic analyses of maggots in porcine corpses for post-mortem interval estimation. Applied Sciences, 11(17), 7885.

Woess, C., Unterberger, S. H., Roider, C., Ritsch-Marte, M., Pemberger, N., Cemper-Kiesslich, J., et al. (2017). Assessing various infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains. PLoS One, 12(3), e0174552.

Huang, W. E., Li, M., Jarvis, R. M., Goodacre, R., & Banwart, S. A. (2010). Shining light on the microbial world: The application of Raman microspectroscopy. Advances in Applied Microbiology, 70, 153–186.

Creagh, D., & Cameron, A. (2017). Estimating the post-mortem interval of skeletonized remains: The use of infrared spectroscopy and Raman spectro-microscopy. Radiation Physics and Chemistry, 137, 225–229.

Ortiz-Herrero, L., Uribe, B., Armas, L. H., Alonso, M., Sarmiento, A., Irurita, J., et al. (2021). Estimation of the post-mortem interval of human skeletal remains using Raman spectroscopy and chemometrics. Forensic Science International, 329, 111087.

Musile, G., Agard, Y., Elio, F., Shestakova, K., Bortolotti, F., & Tagliaro, F. (2019). Thanatochemistry at the crime scene: A microfluidic paper-based device for ammonium analysis in the vitreous humor. Analytica Chimica Acta, 1083, 150–156.

Harshey, A., Kumar, A., Kumar, A., Das, T., Nigam, K., & Srivastava, A. (2023). Focusing the intervention of paper-based microfluidic devices for forensic investigative purposes. Microfluidics and Nanofluidics, 27(10), 65.

Garcia, P. T., Gabriel, E. F., Pessôa, G. S., Júnior, J. C. S., Mollo Filho, P. C., Guidugli, R. B., et al. (2017). Paper-based microfluidic devices on the crime scene: A simple tool for rapid estimation of post-mortem interval using vitreous humour. Analytica Chimica Acta, 974, 69–74.

Agard, Y. (2021). Paper-based microfluidic devices for forensic sciences: Development and validation of innovative tools [dissertation]. Verona (Italy): University of Verona, Department of Diagnostics and Public Health.

Singh, M. K., & Singh, A. (2021). Characterization of polymers and fibers. Cambridge (UK): Woodhead Publishing. (The Textile Institute Book Series). ISBN: 978-0-12-823986-5.

Zia, K., Siddiqui, T., Ali, S., Farooq, I., Zafar, M. S., & Khurshid, Z. (2019). Nuclear magnetic resonance spectroscopy for medical and dental applications: A comprehensive review. European Journal of Dentistry, 13(1), 124–128.

Malet-Martino, M., & Holzgrabe, U. (2011). NMR techniques in biomedical and pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 55(1), 1–15.

Holzgrabe, U., Deubner, R., Schollmayer, C., & Waibel, B. (2005). Quantitative NMR spectroscopy—applications in drug analysis. Journal of Pharmaceutical and Biomedical Analysis, 38(5), 806–812.

Lundquist, K. (1992). Proton (¹H) NMR Spectroscopy. In Methods in Lignin Chemistry (pp. 242–249).

Ith, M., Bigler, P., Scheurer, E., Kreis, R., Hofmann, L., Dirnhofer, R., et al. (2002). Observation and identification of metabolites emerging during postmortem decomposition of brain tissue by means of in situ ¹H‐magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 48(5), 915–920.

Locci, E., Stocchero, M., Noto, A., Chighine, A., Natali, L., Napoli, P. E., et al. (2019). A ¹H NMR metabolomic approach for the estimation of the time since death using aqueous humour: An animal model. Metabolomics, 15, 1–13.

Locci, E., Stocchero, M., Gottardo, R., De-Giorgio, F., Demontis, R., Nioi, M., et al. (2021). Comparative use of aqueous humour ¹H NMR metabolomics and potassium concentration for PMI estimation in an animal model. International Journal of Legal Medicine, 135(3), 845–852.

Movasaghi, Z., Rehman, S., & ur Rehman, D. I. (2008). Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134–179.

Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118.

Yao, Y., Wang, Q., Jing, X., Li, B., Zhang, Y., Wang, Z., et al. (2016). Relationship between PMI and ATR-FTIR spectral changes in swine costal cartilages and ribs. Fa Yi Xue Za Zhi, 32(1), 21–25.

Zhang, K., Wang, Q., Liu, R., Wei, X., Li, Z., Fan, S., et al. (2020). Evaluating the effects of causes of death on postmortem interval estimation by ATR-FTIR spectroscopy. International Journal of Legal Medicine, 134, 565–574.

Zhang, J., Li, B., Wang, Q., Li, C., Zhang, Y., Lin, H., et al. (2017). Characterization of postmortem biochemical changes in rabbit plasma using ATR-FTIR combined with chemometrics: A preliminary study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 733–739.

Tamara, L., Irena, Z. P., Ivan, J., & Matija, Č. (2023). ATR-FTIR spectroscopy as a pre-screening technique for the PMI assessment and DNA preservation in human skeletal remains – A review. Quaternary International, 660, 56–64.

Wang, Q., Zhang, Y., Lin, H., Zha, S., Fang, R., Wei, X., et al. (2017). Estimation of the late postmortem interval using FTIR spectroscopy and chemometrics in human skeletal remains. Forensic Science International, 281, 113–120.

Zhang, J., Wei, X., Huang, J., Lin, H., Deng, K., Li, Z., et al. (2018). Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectral prediction of postmortem interval from vitreous humor samples. Analytical and Bioanalytical Chemistry, 410, 7611–7620.

Li, S., Shao, Y., Li, Z., Zou, D., Qin, Z., & Chen, Y. (2012). Relation between PMI and FTIR spectral changes in asphyxiated rat’s liver and spleen. Fa Yi Xue Za Zhi, 28(5), 321–326.

Published

2025-10-16

How to Cite

Ajayan, A., Aravind, G. B., Chandrakanth, H. V., & Kanchan, T. (2025). Trends in Estimation of Post-Mortem Interval Using  Instrumental Analysis. Journal of Forensic Medicine and Toxicology, 42(3), 89-99. https://doi.org/10.48165/jfmt.2025.42.3.15